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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-944

CONFIGURATION FACTORS FOR EXCHANGE OF RADIANT ENERGY

BEqWEEN AXISYMMETRICAL SECTIONS OF CYLINDERS,

CONES, AND HEMISPHERES AND THEIR BASES

By Albert J. Buschman, Jr., and Claud M. Pittman

SUMMARY

Radiation-interchange configuration factors are derived for axisym-

metrical sections of cylinders, cones, and hemispheres radiating inter-

nally to annular and circular sections of their bases and to other axisym-

metrical sections. The general procedure of obtaining configuration

factors is outlined and the results are presented in the form of equations,

tables, and figures.

INTRODUCTION

The high temperatures which are encountered in components of aero-

space vehicles have brought about a renewed interest in heat transfer

by radiation. For certain components, the heat transferred by radiation

can be shown to overshadow that transferred by conduction. In the present

paper axisymmetric radiation for some common axisymmetric shapes is

studied.

Radiative transfer of heat from one area to another depends, among

other things, upon the fraction of the radiant energy emitted by one area

which is intercepted by a second area. This fraction is identified by

several names, such as the configuration factor, the interchange factor,

the angle factor, or the geometric view factor, and is a function of the

geometrical relation of the areas involved. In the present paper, the

term configuration factor will be used to designate the fraction.

Configuration factors are available for radiation between various

surfaces (see refs. l, 2, and 3) but, for the most part, the areas which

are involved are plane. The purpose of the present paper is to provide

configuration factors for some of the more common nonplanar surfaces.

Some of the configuration factors presented herein are obtained, in

appendix A, by integrating the basic equation which defines the factor
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and the remainder are obtained, in appendix B, by the application of
configuration-factor algebra. The techniques of configuration-factor
algebra make it possible, in somesltuations_ to obtain the desired
configuration factor from available factors _ithout the need for
integration.

In addition to being listed in tables _d given in the form of
equations, the results are presented in carpet plots which permit an
estimate of the magnitude of a given factor _nd show the effect of
varying the proportions of the surfaces involved.

SYMBOLS

A

a

C

F

H

J,k, m, n

M

N

q

r

area

radius of the base of a surface of revolution

circular area

configuration factor defined by e_Lation (4)

height of a cone

integers

length between the mth and nth plazes

nondimensional parameter, rl/a

nondlmensional parameter, L_/a

energy per unit time

area of ring between the mth and nth planes

radius of circle

distance between centers of the areas exchanging radiant

energy

absolute temperature

Cartesian coordinates
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p,e, z

p,e,cp

¢

_n

polar coordinates

spherical coordinates

Stefan-Boltzmann constant

half the apex angle of a cone

angle between the normal to the area An and the line between

centers of the area An and the area which intercepts

radiation from An

solid angle

Subscripts:

0, i, 2, 5, J,k, n

cj

CJ,k

identification of an area, plane, or point

circular area in the base of a body of revolution

an annular area in the base of a body of revolution

(CJ,k = Cj - Ck)

dAl, dA 2 from an area dA I to an area dA 2

J,k from an area J to an area k

Superscripts:

1,2,3, a,H,m,n identification of an area, plane, or point

ANALYSIS

Black-Body Radiation Between Two Isothermal

Surfaces of Arbitrary Orientation

Consider the exchange of radiant energy between two isothermal

black surfaces, A1 and A2, of arbitrary orientation separated by a

nonabsorbing medium as shown in figure 1. The energy per unit time

leaving the first elementary surface dA 1 in the direction of the

second dA 2 Is given by (see ref. l)

_l cos $1 dA1 (i)
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where

q energy, per unit time

Stefan-Boltzmann constant

T1 absolute temperature of dA 1

41 angle between normal to dA I and line between centers of

areas dA I and dA 2

The portion of the energy per unit time leaving dA I which is

intercepted by dA2 depends upon the solid _,ngle dm subtended by dA 2

and can be expressed as

dq_A1,_A2 : g_T14cos 41 _A1 (2)

whe re

cos 42

dm = $2 d_

L
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and S is the distance between the centers ¢f the areas dA I and dA 2.

The energy per unit time which leaves the surface dA 1 and is

intercepted by the surface dA 2 (eq. (2)) csn therefore be expressed as

By defining

dq_Al,_A2 = _ T
cos 41 cos 4 2

S2 _i _ (3)

cos 41 cos 42

se dAe dA1 (4)

equation (5) becomes

qA I,A2 = sTI4AIFAI 'A2 (5)
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The term FAI, A2 depends only upon the geometric configuration of the

two surfaces and is known as the configuration factor. The configura-

tion factor is defined as the fraction of the total energy per unit time

which leaves a surface and is intercepted by a second surface. The above

procedure can be repeated to determine the energy per unit time which

leaves the second surface and is intercepted by the first with the fol-

lowing results :

qA2 ' A1 = oT_2A2FA2 ' AI (6)

whe re

ZA 7A cos _i cos *2FA2, A1 - _ S2 _l _2 (7)
1

It can be seen from equations (4) and (7) that

AIFAI, A2 = A2FA2, A 1
(8)

Equation (8) is known as the reciprocity theorem and, as is seen

in appendix B, is very useful in the application of configuration-factor

algebra. For brevity, whenever the areas involved are understood, equa-
tion (8) is written as

AIFI, 2 = A2F2, i

The net exchange of radiant energy between A I and A2 of fig-

ure l, obtained as the difference between equations (5) and (6) and

simplified by the reciprocity theorem, is

 et: (9)

Black-Body Radiation in Closed Systems

Consider a closed system composed of n isothermal black-body

surfaces separated by a nonabsorbing medium. The net heat flow result

as presented for two isothermal black-body surfaces can be extended to

include the n isothermal black surfaces in the following manner.

According to the Stefan-Boltzmann law, the radiant energy leaving

an isothermal surface J is



The radiant energy incident upon the area A1
in the system is

n

k=l

so that the net exchange of energy becomes

(lO)

from all other surfaces

(ii)

qnet = _T_Aj- _ _k_Fk, j

k=l

(12)

Finally, equation (]2) can be reduced by applying the reciprocity theorem

to obtain the following equation:

qnet = gAj - T4k J,
k=l

(15)

With a knowledge of the configuration factors Fj,k, equation (13)

can be used to obtain heat flows or temperature distributions in a closed

system. Reference 4 demonstrates the use of equation (13) when radiant

heat transfer is accompanied by heat transfe_ by conduction.

Configuration Factors

In practice, configuration factors can oe obtained by experimental,

numerical, and analytical means. (See, for example, ref. i.) In the

present paper, some configuration factors are found directly from equa-

tion (4) and some indirectly from equation (_) through configuration-

factor algebra.

The shapes considered are surfaces of r_volution (cylinder, cone,

and hemisphere) with the ends closed by plane surfaces. All areas con-

sidered are axisymmetrical and therefore the resulting configuration

factors are applicable only to surfaces exhioiting axlsymmetrical tem-

perature distributions.

In the study of radiant heat transmission within a system composed

of a body of revolution and a base plane six types of general configuration
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factors are required. These six types of configuration factors, which

are derived in the present paper, are shown in figure 2 for the case

where the surface of revolution is a cylinder. Similar configuration

factors have been determined for the cone and hemisphere.

In all six configurations, the surface of revolution is divided into

rings by one or more planes which are parallel to the base at heights of

_, _, _. The subscripts and superscripts indicate the planes

between which the length is measured (zero being the base plane) so that

_ nthe rings between these planes will be known as , , R0.

Areas in the base plane considered are either circular or annular

and are designated by CO, Cl, Cn and by Cn_l,n, respectively.

The circular area CO represents the full base of the cylinder so that

Cn_ 1 > Cn. The annular region Cn_l, n represents the region between the

circular areas Cn_ 1 and Cn so that

Cn-l,n = Cn-1 - Cn

Since the circular and annular areas are normally in the base plane,

there is usually no need to specify the plane in which they lie. How-

ever, for a few cases it is necessary to specify the plane and this will

be done by the use of superscripts. For example, _n-l,n

so that the annular region is in the mth plane and is equal to the area

contained between concentric circles in that plane. Whenever C terms

appear without superscripts the area is understood to be in the base plane.

By using this method, R_,C 1 would indicate a ring on the surface

of revolution extending from the base plane to the first plane above the

base exchanging radiant energy with a circular area C1 in the plane of

base. In the same manner __R_'C1,2 would indicate a ring lyingthe

between the first and second planes above the base exchanging radiant

energy with an annular area, C1 - C2, in the base plane.

By using this symbolism, the six configurations presented in fig-
3 1

ure 2 are deslgnated as t_,C 1, R2, C1 , I_,Cl, 2, R21, C1, 2, R2, R0,

2 2
and R1, R 1.
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The derivation of the configuration fa_tors is p_sented in the

appendixes. The configuration factors for the geometry of R_'Clv are

obtained by integration of equation (_) for cylinders, cones, and hemi-

spheres in appendix A. With the exception of _,_ for the hemisphere,

the remaining configuration factors are obt&ined by using configuration-

factor algebra and the equations derived for the geometry of 1
RO, CI"

The use of configuration-factor algebra is explained and demonstrated

in appendix B where configuration factors _'e given for the geometries

1
°f R_'CI' R_'CI, 2' R_'CI, 2' R_'R_ ' and R2R21,i" The ge°metry R_'R0

for the hemisphere is not amenable to the use of configuration-factor

algebra. This situation results from the fact that configuration-factor

algebra depends to a large extent on dealing with similar surfaces and

geometry of _,R_ results in spherical segments which are notthe

hemispheres. Therefore, the result for this case is obtained by integra-

tion in appendix A.

L
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RESULTS AND DISCUSSION

Since all the configuration factors given in the present paper are

obtained with one exception (_R_ for a hemLsphere) from three primary
I

equations (AT), (AI6), and (A26) involving t%e geometry of R_C I and

configuration-factor algebra, only evaluations of these three equations

will be discussed in any detail in this sectLon. The configuration

31
factor derived in appendix A for R2R 0 when the surface of revolution

is a hemisphere is elementary and will not r,_quire discussion.

Table I is a summary which indicates, bit number, the proper equa-

tion to use for the cases previously describ_d. In addition to the

specific surfaces of revolution treated in d_tail, fundamental equations

are indicated for use with an arbitrary surface of revolution.

Cylinders

The configuration factor for the geomet_ _,C I when the surface

of revolution is a cylinder is derived in ap]_ndix A and is given by

equation (AT). Equation (AT) is given in a rondimensional form by

equation (AS) which is
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+2N2(1÷M2)+ (1 M2)2(1 M2)_

The nondimensional parameters are

M = rl/a

where a is the radius of the base, rI is the radius of CI, and

is the height of R_. (See fig. 3. )

The term M is a ratio of the radius of area C1 to the radius

of the base of the cylinder C0, whereas the term N is a slenderness
ratio.

Table II presents results from the nondimensional equation (AS)

for a wide range of r_a and Lol/a. The data of table II are also

given in the form of a carpet plot in figure 4.

Cones

I
The configuration factor for the geometry of Ro, CI when the sur-

face of revolution is a cone is derived in appendix A and is given by

equation (A16), which is a lengthy equation that results from the evalua-

tion of a nonelementary integral. Because a large number of terms in

the equation must be defined, it will not be repeated in the text and

reference should be made to appendix A. Table III gives the results of

the evaluation of a _ondimensional form of equation (A16) for combina-

tions of _/H and rl/a between 0. i and 1.0 and for cone half-angles

of _o, i0 o, and 20 ° . The dimensions L_ and rI are as shown in

figure _.

The data of table III are presented in the form of a carpet plot

in figure 6. Figure 6 contains three parts, one for each of the half-

angles considered. As expected, the evaluation of equation (A17), shows

that the cone results approach the results obtained for the cylinder as

the base angle approaches _/2.
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Hemispheres

l

The configuration factor for the geometry of RS, CI when the sur-

face of revolution is a hemisphere is derived in appendix A and is given

by equation (A26). Equation (A26) is given in nondimensional form by

equation (A27), which is

where the nondimensional parameters are, as for the cylinder_

M = rl/a

1

and the dimensions LO, rl, and a are as :_hown in figure 7. Table IV

presents results of the evaluation of equation (A27) for combinations

of rl/a and _/a between 0.1 and 1. O.

The data of table IV are presented in tile form of a carpet plot in

figure 8. Figure 8 shows that FR_,Cl_ is constant for all values of

N when M = 1.

L
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CONCLUDING REMARKS

Configuration factors are presented whi¢h can be used in heat-

transfer studies involving nonplanar surface_ at high temperatures.

These configuration factors have been derived for axisymmetrical sec-

tions of cylinders, cones, and hemispheres r_diating internally to

circular and annular regions of their bases ¢r to other axisymmetric

sections. Some of the factors were obtained by integrating fundamental

equations expressed in terms of convenient ccordinates. The remainder

of the factors were obtained by utilizing configuration-factor algebra

and the results of the integrations. The use of configuration-factor

algebra is explained and demonstrated. The calculated radiation con-

figuration factors are given in tables and plots.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base, Va., July 20, 1961.
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APPENDIXA

DERIVATIONOF CONFIGURATION FACTORS FOR CYLINDERS,

CONES, AND HEMISPHERES BY INTEGRATION
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The equation for the portion of the total radiation from an elemental

area dA 1 which is incident upon an elemental area dA 2 is derived in

the body of the paper as

A fA 2 cos @i cos @2FAI ,A2 = _ S2 d_ dA 1
1

whe re

S distance between dA I and dA 2

@1,@ 2 angles between the line Joining the areas dA I and dA 2

the normals to the respective areas.

and

The configuration factor will be derived for the most general case

of a section of a body of revolution extending from the base plane to a

given plane above it exchanging radiant energy with an axisymmetrical,

circular region located in the plane of the base as shown in figures 3,

5, and 7 for cylinders, cones, and hemispheres, respectively. The param-

eters of equation (A1), @l' @2' and S, must be expressed in terms of

the chosen coordinates so that the equation can be integrated.

In order to keep the solution as general as possible, the integra-

tion of equation (A1) will be carried out over surfaces designated as

A1 and A2. The area A 1 will represent the area on the surface of

revolution and the area A2 will represent the circular area C1

in the base. This will apply throughout the derivation of the configura-

tion factor for the geometry of R_,C 1 for cylinders, cones, and hemi-

spheres. For the geometry of R ,R 0 for a hemsiphere, the areas AI

and A2 represent the upper and lower rings, respectively. However, in

all cases the limits will be written in general terms.
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Configurations Factors for the Geometry R_,CI

Cylinder.- When the surface of revolution is a cylinder (see fig. 5),

the parameters of equation (A1) in terms of th_ polar coordinates p, 8,

and z become

a - P2 c°s(81 - e2)

cos 41 S

z (A3)
cos 42 : _ 9

9

S2 = z2 + a2 + 022 - 2ao2cos(:_ 1 - e2) (A4) 2

dA I = a de I dz

d_ = P2 dP2 d82

Integration over ep, from 0 to 2_ (aft,_r substituting eqs. (A2),

(A3), and (A4) into eq. _A1)), gives the confii_ration factor from the

area dA 1 to the differential ring in the base 2_D2 dp 2 as

dAiFdAi, 2_o2dP 2 =

2z[a(z2 + a2 + 022 ) -- 2ao22]p 2 dP 2 dA I

[(z2 +a 2 +

3/2
(AS)

The configuration factor from the differe_:tial area dA I to the

finite area A 2 can be obtained from equation (AS) by integrating over

p2 , from 0 to rl_ which after rearranging glw_s

z2 + a2 + rl2 1

 IF I, Cl -- 2"11/2-

z4 + 2(a2 + rl2)Z2 + (a2 - rl2) J

(m)

The following equation, obtained by integrating equation (A6) over

eI from 0 to 24 and over z from 0 to 4, gives the configuration

factor from the area A I to the area A2:
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or in nondimensional form

FR1, CI 4N

where

(A7)

(AS)

M = rl/a

_=_/a

Results obtained by evaluating equation (A8) in the range

and 0.2 % N _ 200 are given in table II and figure 4.

A special case presents itself when A2 becomes the full area of

the base of the cylinder (M = 1). Equation (AS) then reduces to

_,c ° :_ .4 - _ (Ag)

The reciprocity theorem can be employed to determine the configuration

factor from the base of the cylinder to the walls FCo,_.

Cones.-When the surface of revolution is a cone (fig. 5), the

parameters of equation (A1) can be expressed as

0. i <: M<: 1.O

z (All)cos _2 :
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S2 = z2 + pl 2 + p22 - 2PlP 2 cos(e I - e2) (AZ2)

dA2 = P2 dP2 de2

whe re

# = Half apex angle

a = Pl + z tan

Integration over e2 after substituting ,._quations (A10), (All),
and (A12) into equation (A1) gives the configuration factor from the

area dA 1 to the differential ring in the base as

2z 11 dAl[ (z 2 + p22) - 2PlP22]p2cos a + pl 2 dP2
(Al3)

The configuration factor from the differential area dA 1 to the area C1

is obtained by integrating equation (A1}) over P2 from 0 to r1. It is

_Pl 4 - aPl3 + p12(2z2- r 12) + aPl(rl 2 - z2) + z2Iz2 + r12 )

dAIFd_'CI = 2z c°s ' dAl t [ __ 1 1/24p12 (z2 + P12)2 + 2,12(z2 - P12) + r 1

- + - + Z2_

- pl2) (_')

Since the area AI is a surface of revolutloz, where

dAl = Pl sec _ de I dz

the configuration factor from an area R_ to an area CI after inte-

grating over 81 and collecting terms becomes

CI _ 0

alz3 + blZ2 + ClZ + dl)dZ

a2 z4 + b2z5 + c2z 2 + d2z + e2) I/2

f0 _ a3z3 + b3z2 + c3z + d3 d_
- 2

a4z + b4z + cL

(A_5)

L
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whe re

aI = sec4_

bI = -3a tan _ sec2_

cI = (Sa 2 - rl2)tan2 _ + a2 _ rl2

dl = -a tan _(a 2 - rl2 )

a2 = sec4_

b2 = -4a tan _ sec2_

c2 = 2a2(2 tan2_ + sec2_) + 2rl2(1 - tan2_)

d2 =-4a tan _(a 2 - rl2 )

a3 = sec4_

b3 = -3a tan _ sec2_

c3 = a2(, tan2, + 11

d 3 = -a3tan @

a4 = sec2_

b 4 = -2a tan

c4 = a2

For brevity, equation (A15) will be written as

cos _ cot *(_l + I2) (_6)

The first integral of equation (A15) is not an elementary integral

and it is necessary to introduce elliptic functions in order to evaluate
it. Reference 4 presents a method allowing integrals containing the

square root of a quartic in the denominator of the integrand to be put

into Legendre's standard form of an elliptic integral.
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By making use of reference 5 to evaluate the elliptic integrals

the first integral of equation (A15) becomes:

L
(q-p)It w _(v_-w_lo)

Ii

-__eo2_,I[_(_ + i)2+ _(x + l)

L_-p

q-_,_

P

q

L

9
9
2

% _ _l°s_l

+
_(__w_)-_o(V_-_o)(.

_s 2 - k2/

+

oo

_ _msir (2m_) sin (2mvl)
n sinh(2mp)

m=l

Oo

_ qmsin(_) sin (_mV2)m sinh(2m_)

m=l

_sin(_+_2)(_s2-k2
½1ogel,

_in(_-_2)(Vs2 k2

+ _sln(_ <Vs 2 k2i loge| _ + 71) - - sdnq_l

_ _in(_- Vl)(Vs2 k2 + sdn_l)J

\

./

(_7)
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where

and where m and

p and q are roots of the equation

(a, + a - !8 - "_')_2 + 2(18_" - c_,)'q + c_(_ + "_') - IB_'(_ + a) = 0

are the nonconJugate roots of the quartic

b2 z3 c2 z2 d2 e2
z4 +_ +_ +_z +_:o

and

sin-1. / K6

A: VK 5 +K6

cs _Pn = cot (Pn

dn _n

E (_Pn,,k)

a(x)= + +Ksx)

K65-
k modulus,

K65

K !

Jacobi elliptic function, VI - k2sin2_n

incomplete elliptic integral of the second kind

incomplete elliptic integral of the first kind

complementary modulus, _- k2

complete elliptic integrals of the first and second kinds,

respectively

complete elliptic integral of the first kind with a modulus

of k'

K I = alq3 + blq2 + clq + d I

K2 = 5alpq2 + blq2 + 2blpq + 2clq +clP + 5dI

K 3 = 3alp2 q + 2blPq + blP2 + clq + 2clP + 5d I

17
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K_ = alP3 + blp2 + clP + d1

= _- 2p_e(,:,,)+ I< 2

_ q2_ 2qRe(_)+ I_l2

=_ __o(0)+I_t_

y_ =q2_ 2ql_e(l_)+ [1_2

,_ =-2(_ + _)(K7 + _)

_:].o= 3(_:8 + _ + 2_g_:8)

K].I -- - (_ + _:7 + 6_)

K _

_.=e

'"+ K 6

s_-Q._

_'n= "F('_n,'_)
2k

v =K 3- 2_+3K].

W = K4 - K3 + K2 - K1

Z(A,k) Jacobl Zeta function, E ]_(A;, k)E(A, k) -

L
9
9
2
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2K

The second integral of equation (AI5) is an elementary integral

which upon integration becomes

+ (AZ8)

Equation (AI6) represents the fraction of the total radiant energy

which leaves surface AI, the frustum of a right cone, and is inter-

cepted by surface A2, a plane circular area in the base of the cone.

If the intercepting area A 2 is the entire base of the cone, the results

are greatly simplified. The procedure remains unchanged up to the inte-

gration of equation (AI5) which now contains two elementary integrals

whose integration yields

0

The configuration factor for the complete cone exchanging radiant

energy with the complete base becomes

FR_ 'CO = sin _ (A20)

The configuration factor from the base of the cone to the walls

can be found from the reciprocity theorem with the aid of configuration-

factor algebra. (See appendix B.)

Hemisphere.- When the surface of revolution is a hemisphere (fig. 7),

the parameters of equation (AI) can be expressed as

2[a 2 - plP2 cos(e I - e2)]

cos @i = aS
(A2I)
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z

cos _2 : (A22)

S2 : a 2 + p22 - 2PlP 2 cos(81 - e2) (A23)

and

dA I = a de I dz

dA2 = P2 dP2 de2

Integration over e2 after substituting equations (A21), (A22),

and (A25) into equation (AI) gives the configuration factor from the

area dA 1 to the differential ring in the base as

dAiFdAl'2_P2dP2 a[p24 + 2P22(z2 _ pl2) + (p12 + z2)2]'/2

where a is the radius of the hemisphere, l_tegration of equation (A24)

over P2 from 0 to rI gives, after some resrranging, the configura-

tion factor from the differential area dA 1 to the area C1 as

zrl2dA 1 (A25 )

dAiFdA1 'C1 a[rl4 + 2rl2(2z2 - _2)+ a4] 1/2

Integrating over eI

dAiF2_adz, C I

Integrating over

area R_ to areafrom

from 0 to 2_ gives

2_r12z d z

z from 0 to _ giveE the configuration factor

CI as

L
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FRI, C1
l _ "'

(A26)

where rI is the radius of the circular area in the equatorial plane,

and LOI is the vertical height of the area _.

Equation (A26) may be put in nondimensional form by letting

M = rl/a

so that the configuration factor becomes

' Cl -- (1- + (l_ (-427)

An interesting and useful result can be obtained from equation (A25).

If A2 is taken as the total area of the base (i.e., rI = a), equa-

tion (A25) reduces to

dA 1

_IFaAI,CO = --_-- (A28)

By integrating over A1 the following result is obtained:

1

rA1, Co = _" (_9)

Now since AI has not been specified it follows that the configuration

factor from any area on the surface of a hemisphere to the equatorial
plane is one-half.

i
Configuration Factors for the Geometry R_,R 0 for the Hemisphere

When the surfaces exchanging radiant energy are rings on the surface

of a hemisphere (fig. 9), the parameters of equation (A1) become
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and

cos @i = cos @2

= - sin eI sin e2 cos(_1 - _2) - cos eI cos e2] (A30)

S2 = 2a2[1 - sin 91 sin e,2 cos(_ 1 - c2) - cos eI cos e2] (A31)

where $ and _ are as shown in figure 9.

Substitution of equations (A30) and (A31) into equation (A1) yields

dAIFdAI, dA 2 -

is a surface of revolution

_AI _2 (A32)
4_ 2

Since A_

dA 2 = a2 sin e2 de 2 d@ 2

integration of equation (A31) is simplified _md gives the configuration
1

factor from the differential area dA I to the ring R0 as

Integration over AI where

dA 1 = a2sin e I de I c_ 1

gives the configuration factor from a ring to a ring as

,R 0

The areas can be expressed as

R_ = 2_aL_

R_= 2_a_

and

L

9
9
2
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so that

Fw3 R1 =
'2 __'0

-,0 _n 2

]
where L_ and i_ are the vertical heights of the hemispherical

segments.

(A35)



24

APPENDIX B

CONFIGURATION- FACTOR _//3EBRA

It is possible to determine configuration factors for many cases

from existing configuration factors by utilizing the technique of

configuration-factor algebra (see the section entitled "Geometric Flux

Algebra" in ref. l) and the previously mentioned reciprocity theorem.

The basic requirement involved in this technique is that the unknown

configuration factors be of such a nature that they can be expressed as

sums and differences of known configuration :'actors. The procedure is

best explained by an example.

L

9
9
2

Example

Suppose that it is necessary to determine the configuration factor

from a ring on the surface of a cylinder R_ to an annular region C1, 2

of the base as shown in figure 10. It will be shown that it is possible

to determine this configuration factor from _.he configuration factors

for other geometries of figure lO which are z_eadily obtained from

equation (AT).

Equation (AT) gives the configuration factor for a particular

geometry. That is, the surface of the cylin(_r must extend from the

intersection of the base plane to any height above this intersection.

The intercepting area is also restricted in _hat it must be a circular
area the center of which is on the axis of N_volution. It is therefore

necessary to express the desired configurati(,n factor in terms of those

which have been obtained. This can be done _s follows. From figure lO,
it can be seen that

R l, O1 R0, C 1

(BI)

and

2 2 -
RI, C2 R0, C2 - _R_,C 2

Since C1, 2 = C1 - C2, then
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9
2

R2F 2

RI' CI, 2
= R2F 2 - R2FR°,C2_ _± RI, CI

(B3)

The left-hand side of equation (B3) can be expressed as the difference

of the right-hand sides of equations (BI) and (B2) as follows:

=1 -F

R1 i- _ - FI0 R_, CI R O, C2

(B4)

If equation (A7) is used to determine the configuration factors within

the brackets,

sions as

F 2

RI' Cl, 2

_,Cl ' can be expressed in terms of the cylinder dimen-FR 2

1 + 2( a2 + rl )_"0_ + (a2 - rl )
4aL21

-_(4) 4 + 2(a 2 + r22)(_) 2 + (a2 - r22) 2

+ _(_)4 + 2(a2 + r22)(_)2 + (a2 _ r22) 2

-._(LI)4 + 2(a2 + r12)(Ll)2 + (a 2 - r12) 2] (B5)

Although figure i0 and the preceding example involve a cylinder,

the procedure applies equally as well when the surface oi' revolution is

a cone or a hemisphere.

The above example is a simple application of configuration-factor

algebra presented in order to introduce the basic ideas which will now

be used to obtain the configuration factors for the geometries of
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R_,cl,_,el,2,_,el,2,_d _i,2Rl2forcyl_n_ors,cone_,_ homl
spheres as well as R ,R 0 for cylinders and cones. (See fig. 2 for

examples of these geometries. )

Configuration Factors for the Geometry R_,C I

The configuration factor for the geometry of R_,C I can be obtained

from the equation derived for the geometry of R_,C 1 through

configuration-factor algebra and is given in general terms by

L

9
9
2

R1,cI R_\ _,ci _Ri_,Cl/

1 2 2
where RO, RO, and R1 are ring areas.

C[linder.- For a cylindrical surface of revolution, equation (A7)

can be used to determine the terms on the rlght-hand side of equation (B6)

so that the configuration factor in terms of the dimensions of the cylin-
der becomes

FR2' C1 4aL21 _)4

_(Lo) 4 2(Lo)2(a 2 rl2)+ (a2 rl2 + (Lo) 2- (L_)21_ + + . )2 (B7)

Cone.- For a conical surface of revolutior, equation (AI6) can be

used to determine the terms on the right-hand _ide of equation (B6) so

that the configuration factor in terms of the cimensions of the cone
becomes

os ot iF2 = 2

D=r I

(_)
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where the integrals II and 12 are given by equations (A17) and

(A18), respectively.

The first two integrals of equation (BS) are to be evaluated for

frustum of height L_ and the second two are to be evaluated fora a

frustum of height _ while all four integrals are to be evaluated for

an intercepting area of radius r1.

Hemisphere.- For a hemispherical surface of revolution, equa-

tion (A26) can be used to determine the terms on the right-hand side of

equation (B6) so that the configuration factor in terms of the dimensions

of the hemisphere becomes

F 2 _ 1 I_4r12(_)2 + (a2 - r12)2 - _4rl2(L1)2 + (a2 - r12)21
R I, C1 4aL_

Configuration Factors for the Geometry _, CI, 2

1

The configuration factor for the geometry of Ro, C1, 2 can be

1 throughobtained from the equation derived for the geometry of Ro, C1

configuration-factor algebra and is given in general terms by

=F 1 -F 1
FR_, Cl, 2 R0, C1 Ro, C2

(mo)

Cylinder.- For a cylindrical surface of revolution, equation (A7)

can be used to determine the terms on the right-hand side of equa-

tion (BlO) so that the configuration factor in terms of the dimensions

of the cylinder becomes

1

FRI, C1,2 - 4aL_

- _(Lo)4 + 2(L1)2(a 2 + r22)+ <a2 - r22)2 + rl2- r221 (Bll)
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Cone.- For a conical surface of revolut:on, equation (AI6) can be

used to determine the terms on the right-bane side of equation (BlO)

so that the configuration factor in terms of the dimensions of the cone
be come s

oo c. )I
= +

F 1 2_/@ cot
+ P =rI

(B12_)

Note that two integrals are evaluated for p = rl, two for p = r2,

and all four for a height L1.

Hemisphere.- For a hemispherical surface of revolution, equa-

tion (A26) can be used to determine the term_ on the right-hand side

of equation (B10) so that the configuration factor in terms of the

dimensions of the hemisphere becomes

FRI 'cI'2 - 41L 1 [_4r12(L I)2 + (a2- _12)2

2.2r22(L+ r2I +rl2 (B13)

Configuration Factors for the Geometry of R21'Cl, 2

The configuration factor for the geometzy of R_,CI, 2 can be

1
obtained from the equation derived for the geometry of R0, C1 through

conflguration-factor algebra. This has been performed in the section

entitled "Example" and is given by equation (B4).

Cylinder.- Equation (B5) gives the configuration factor for the

2

geometry of R1, C1, 2 for a cylindrical surface of revolution.

Cone.- For a conical surface of revolutian, equation (A16) can

be used to determine the terms on the right-hand side of equation (B4)

so that the configuration factor in terms of the dimension of the cone
becomes

L

9
9
2
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gr
cos # cot # II/

=_-_E t[ill+ 12)
P =rI 0r ]

P =r I

(B14)

Again it is to be noted that the sum of the integrals must be evaluated

for the correct combinations of O and L.

Hemisphere.- For a hemispherical surface of revolution, equa-

tion (A26) can be used to determine the terms on the right-hand side of

equation (B4) so that the configuration factor in terms of the dimen-

sions of the hemisphere becomes

1 I_4rl2 (Lg)2 + (a2 - r12)2 - V4r22(Lg)2 + (a2 - r22)2

2)2 + V4r22(L1) 2 (a2 r22) 2]- _4r12(Ll)2 + (a2 - rI + - (m5)

Configuration Factors for the Geometry of R2, R03 I

The configuration factor for the geometry of R ,R 0 can be

obtained from the equation derived for the geometry of R_,Cl_ through

configuration-factor algebra and is given in general terms by

Co Co

C_linder.- For a cylindrical surface of revolution, equation (A9)

(a special case of (AT) when the intercepting area is the full base of

the cylinder) can be used to determine the terms on the right-hand side

(Bi6)
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of equation (B16) so that the configuration factor in terms of the dimen-
sions of the cylinder becomes

4__ •_V(L_I2_ 12_

_ 4a 2 + L0 LO) 4a 2 (BI7)

Cone.- For a conical surface of revolutio:1, equation (A19) (a

special---_ase of equation (A16) when the interc._pting area is the full

area of the base of the cone) can be used to d._termine the terms on the

right-hand side of equation (B16) so that the _onfiguration factor in

terms of the dimensions of the cone becomes

1 L1H

L

9
9
2

. 2LOL_cos _ cot _]
]

(BI8 )

Hemisphere.- For a hemispherical surface ,)f revolution, equa-

tion (A26) cannot be applied to equation (B16) to determine the config-

uration factor for the geometry of _,_. This is because the first

two terms on the right of equation (B16) canno_ be obtained from equa-

tion (A26), which is for hemispheres, since t_!_ surface of revolution

above plane 1 is a spherical segment. Therefore, the equation for the

configuration factor between rings on the surface of a hemisphere is

derived in appendix A (eq. (A35)) by integratiJlg equation (4) over

_ _ _.
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Configuration Factors for the Geometry R_,R_

Radiation in a closed system composed of several isothermal surfaces

is further complicated by surfaces of positive curvature. A surface of

positive curvature Aj intercepts a portion of its own radiated energy

and a configuration factor of the form Fj,j must be determined. In

order to determine Fj,j, use is made of the fact that if a surface Aj

is surrounded by (n - l) other surfaces, forming a closed system, the

sum of the configuration factors between Aj and all surfaces is one,
or

n

F j,k = i

k=l

(B19)

If the surface Aj can see itself, equation (BI9) can be written as

j-1 n

Fjjj = 1- _--Fj, k - _ Fj, k

k =i k =j+i

(_2o)

For a surface of revolution, equation (B20) can be replaced by

FR _2 = i - F 2 -
i'"i RI 'CO1 F_2 _2_i' UO

(B21)

where R i is the ring formed by the intersections of planes 1 and 2,

1 2
which are perpendicular to the axis of revolution. Areas CO and CO

are circular areas in planes 1 and 2 bounded by the surface of revolu-

tion. The last two terms in equation (B21) represent the fractions of

radiation from R_ which fall on surfaces below and above R_,

respectively.

Cylinder.- If the surface of revolution is a cylinder

cg

and equation (B21) reduces to

F-2 -2 = i - 2F 2 I
_i' _i RI' CO

(_2)
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The configuration factor FRI,2cvl from the walls of a cylinder to

the base can be obtained from equation (A9), and equation (B22) may then

be written in terms of the dimensions of the cylinder as

F 2 2 = 1+ _ 1 + (B25)

It can be seen from equation (B23) that F 2 2 for a cylinder is
R1, R]

dependent upon the height of the ring but not upon the position of the

ring above the base of the cylinder.

Cone.- For a conical surface of revolutior

R I'CO

where _2 is all the surface area above R2i"

By using equation (B24), equation (B21) becomes

- F _ _ (_)
F 2 w2 = 1 - Fw2 _I R],R__'i'_'i _'i'vO

2
The portion of the energy leaving R1 which is intercepted by the

circular area C_ can be determined from equation (AIg) as

i L2)2csc2, 4_ c._c *(2L H sin2* - (B26)F2 1 = + +

Configuration-factor algebra for the exchange of radiant energy

between R2 and _2 gives

- 2

L

9
9
2
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By using equations (A19) and (A20), equation (B27) yields

FR12 R_2 = 2(_ l+ _) I_(L2)2csc2_ + 4LH_- csc _(2_sin2_ + L21 (B28)

Substitution of equations (B26) and (B28) into equation (B25) gives

the configuration factor for a ring of a cone radiating to itself as

2
F 2 = i i H _)2csc2_ + 4LIHLH- LI cos _ cot (B29)

RI, RI2 _+L 2

It can be seen from equation (B29) that the portion of its own

radiated energy that a ring on the surface of a cone receives is dependent

upon the relative position of the ring as well as on the height of the

ring.

Hemisphere.- For a hemispherical surface of revolution, since the

total height equals a, equation (B21) can be written

FR2 R2 = i - F 2 - F 2 a
i'_'i RI' CI RI' R2

(BSO)

where

FD2 .i =

_'i'_0 R2

_2_nO_.2 - _ i + R21F 2 i

RO, C0 R0, C0 RI, R0

By using equations (A29) and (A55), equation (B30) becomes

(B31)

(B52)

Here again, as for a cylinder, F.2 _2 is dependent upon the

_i' _i

height of the _ring L2 and not upon its position above the base plane.
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Figure i.- Relative positions of isothermal black surfaces.
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